Optimized nucleus isolation protocol from frozen mouse tissues for single nucleus RNA sequencing application.

针对单细胞核 RNA 测序应用,优化了从冷冻小鼠组织中分离细胞核的方案

阅读:4
作者:Minati Marie-Albane, Fages Angeline, Dauguet Nicolas, Zhu Jingjing, Jacquemin Patrick
The single cell RNA sequencing technique has been particularly used during the last years, allowing major discoveries. However, the widespread application of this analysis has showed limitations. Indeed, the direct study of fresh tissues is not always feasible, notably in the case of genetically engineered mouse embryo or sensitive tissues whose integrity is affected by classical digestion methods. To overcome these limitations, single nucleus RNA sequencing offers the possibility to work with frozen samples. Thus, single nucleus RNA sequencing can be performed after genotyping-based selection on samples stocked in tissue bank and is applicable to retrospective studies. Therefore, this technique opens the field to a wide range of applications requiring adapted protocols for nucleus isolation according to the tissue considered. Here we developed a protocol of nucleus isolation from frozen murine placenta and pancreas. These two complex tissues were submitted to a combination of enzymatic and manual dissociation before undergoing different steps of washing and centrifugation. The entire protocol was performed with products usually present in a research lab. Before starting the sequencing process, nuclei were sorted by flow cytometry. The results obtained validate the efficiency of this protocol which is easy to set up and does not require the use of commercial kits. This specificity makes it adaptable to different organs and species. The association of this protocol with single nucleus RNA sequencing allows the study of complex samples that resist classical lysis methods due to the presence of fibrotic or fatty tissue, such as fibrotic kidney, tumors, embryonic tissues or fatty pancreas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。