Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis.

烷烃颗粒通过内体损伤和 TLR2 介导的炎症小体激活,导致无菌性骨溶解

阅读:4
作者:Maitra Radhashree, Clement Cristina C, Scharf Brian, Crisi Giovanna M, Chitta Sriram, Paget Daniel, Purdue P Edward, Cobelli Neil, Santambrogio Laura
Ultra-high molecular weight polyethylene is widely used as a bearing surface in prosthetic arthroplasty. Over time the generation of implant-derived wear particles can initiate an inflammatory reaction characterized by periprosthetic inflammation and ultimately bone resorption at the prosthetic bone interface. Herein we present evidence that the different sized particles as well as the different length alkane polymers generated by implant wear leads to a two component inflammatory response. Polymeric alkane structures, with side chain oxidations, directly bind and activate the TLR-1/2 signaling pathway. Whereas micron- and nanometer-sized particulate debris are extensively phagocyted and induce enlargement, fusion and disruption of endosomal compartments. The resulting lysosomal damage and subsequent enzymatic leakage induces the NALP3 inflammasome activation as determined by cathepsins S and B cytosolic release, Caspase 1 activation and processing of pro-IL-1beta, and pro-IL-18. These two processes synergistically results in the initiation of a strong inflammatory response with consequent cellular necrosis and extracellular matrix degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。