BACKGROUND: Lignocellulosic biomass could support a greatly-expanded bioeconomy. Current strategies for using biomass typically rely on single-cell organisms and extensive ancillary equipment to produce precursors for downstream manufacturing processes. Alternative forms of bioproduction based on solid-state fermentation and wood-degrading fungi could enable more direct means of manufacture. However, basic methods for cultivating wood-degrading fungi are often ad hoc and not readily reproducible. Here, we developed standard reference strains, substrates, measurements, and methods sufficient to begin to enable reliable reuse of mycological materials and products in simple laboratory settings. RESULTS: We show that a widely-available and globally-regularized consumer product (Pringlesâ¢) can support the growth of wood-degrading fungi, and that growth on Pringlesâ¢-broth can be correlated with growth on media made from a fully-traceable and compositionally characterized substrate (National Institute of Standards and Technology Reference Material 8492 Eastern Cottonwood Whole Biomass Feedstock). We also establish a Relative Extension Unit (REU) framework that is designed to reduce variation in quantification of radial growth measurements. So enabled, we demonstrate that five laboratories were able to compare measurements of wood-fungus performance via a simple radial extension growth rate assay, and that our REU-based approach reduced variation in reported measurements by up toâ~â75%. CONCLUSIONS: Reliable reuse of materials, measures, and methods is necessary to enable distributed bioproduction processes that can be adopted at all scales, from local to industrial. Our community-based measurement methods incentivize practitioners to coordinate the reuse of standard materials, methods, strains, and to share information supporting work with wood-degrading fungi.
Enabling community-based metrology for wood-degrading fungi.
实现基于社区的木材降解真菌计量
阅读:3
作者:Perez Rolando, Luccioni Marina, Kamakaka Rohinton, Clamons Samuel, Gaut Nathaniel, Stirling Finn, Adamala Katarzyna P, Silver Pamela A, Endy Drew
| 期刊: | Fungal Biology and Biotechnology | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Mar 19; 7:2 |
| doi: | 10.1186/s40694-020-00092-2 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
