Dipyridamole potentiates the in vitro activity of MTA (LY231514) by inhibition of thymidine transport.

双嘧达莫通过抑制胸苷转运增强 MTA (LY231514) 的体外活性

阅读:2
作者:Smith P G, Marshman E, Newell D R, Curtin N J
The novel pyrrolopyrimidine-based antifolate LY231514 (MTA), inhibits multiple folate-requiring enzymes including thymidylate synthase, glycinamide ribonucleotide formyltransferase and dihydrofolate reductase. Both thymidine and hypoxanthine are required to reverse MTA growth inhibition in leukaemia and colon cancer cells. Prevention of MTA growth inhibition by thymidine and/or hypoxanthine was investigated in two human lung (A549, COR L23) and two breast (MCF7, T47D) tumour cell lines, and the effect of the nucleoside/base transport inhibitor dipyridamole (DP) on thymidine and hypoxanthine rescue defined. MTA IC50 values (continuous exposure three population doublings) were: A549-640 nM, COR L23-28 nM, MCF7-52 nM and T47D-46 nM. Thymidine (1 microM) completely prevented growth inhibition at the MTA IC50 in all cell lines. At 10 x IC50, growth inhibition was only partially reversed by thymidine (< or = 10 microM); both thymidine and hypoxanthine (30 microM) being required for complete reversal, reflecting the multi-targeted nature of MTA. Growth inhibition by MTA was not affected by hypoxanthine alone. A non-toxic concentration (1 microM) of DP prevented thymidine/hypoxanthine rescue of MTA indicating that DP may potentiate MTA activity by preventing nucleoside and/or base salvage. Thymidine transport was inhibited by > or = 89% by 1 microM DP in all cell lines, whereas hypoxanthine transport was inhibited only in A549 and MCF7 cells. Therefore, prevention of end-product reversal of MTA-induced growth inhibition by DP can be explained by inhibition of thymidine transport alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。