Radiation-Resistant Bacteria Deinococcus radiodurans-Derived Extracellular Vesicles as Potential Radioprotectors.

耐辐射细菌 Deinococcus radiodurans 衍生的细胞外囊泡作为潜在的放射防护剂

阅读:4
作者:Han Jeong Moo, Mwiti Godfrey, Yeom Seo-Joon, Lim Jaeyoon, Kim Woo Sik, Lim Sangyong, Lim Seung-Taik, Byun Eui-Baek
The increasing use of radiation presents a risk of radiation exposure, making the development of radioprotectors necessary. In the previous study, it is investigated that Deinococcus radiodurans (R1-EVs) exert the antioxidative properties. However, the radioprotective activity of R1-EVs remains unclear. In the present study, the protective effects of R1-EVs against total body irradiation (TBI)-induced acute radiation syndrome (ARS) are investigated. To assess R1-EVs' radioprotective efficacy, ARS is induced in mice with 8 Gy of TBI, and protection against hematopoietic (H)- and gastrointestinal (GI)-ARS is evaluated. The survival rate of irradiated mice group decreases substantially after irradiation. In contrast, pretreatment with R1-EVs increases the survival rates of the mice. The administration of R1-EVs provides effective protection against radiation-induced death of bone marrow cells and splenocytes by scavenging reactive oxygen species (ROS). Additionally, R1-EVs protect both intestinal stem and epithelial cells from radiation-induced apoptosis. R1-EVs stimulate the production of short-chain fatty acids in the gastrointestinal tract, suppress proinflammatory cytokines, and increase regulatory T cells in pretreated mice versus the irradiation-only group. Proteomic analysis shows that the R1-EV proteome is significantly enriched with proteins involved in oxidative stress response. These findings highlight R1-EVs as potent radioprotectors with applications against radiation damage and ROS-mediated diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。