ALS molecular subtypes are a combination of cellular and pathological features learned by deep multiomics classifiers.

ALS分子亚型是由深度多组学分类器学习到的细胞和病理特征的组合

阅读:2
作者:O'Neill Kathryn, Shaw Regina, Bolger Isobel, Tam Oliver H, Phatnani Hemali, Gale Hammell Molly
Amyotrophic lateral sclerosis (ALS) is a complex syndrome with multiple genetic causes and wide variation in disease presentation. Despite this heterogeneity, large-scale genomics studies revealed that ALS postmortem samples can be grouped into a small number of subtypes, defined by transcriptomic signatures of mitochondrial dysfunction and oxidative stress (ALS-Ox), microglial activation and neuroinflammation (ALS-Glia), or TDP-43 pathology and associated transposable elements (ALS-TE). In this study, we present a deep ALS neural net classifier (DANCer) for ALS molecular subtypes. Applying DANCer to an expanded cohort from the NYGC ALS Consortium highlights two subtypes that strongly correlate with disease duration: ALS-TE in cortex and ALS-Glia in spinal cord. Finally, single-nucleus transcriptomes demonstrate that ALS subtypes are recapitulated in neurons and glia, with both ALS-wide and subtype-specific alterations in all cell types. In summary, ALS molecular subtypes represent a combination of cellular and pathological features that correlate with clinical features of ALS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。