BACKGROUND: Polyunsaturated fatty acids (PUFAs), particularly Omega-3 (Ï-3) and Omega-6 (Ï-6) PUFAs, may exert neuroprotective effects via the endocannabinoid system (ECS) and are promoted as brain health supplements. However, despite their potential role in endocannabinoid biosynthesis, the impact of PUFAs on ion channels such as TRPV1 and TRPA1, which are modulated by endocannabinoids, remains incompletely understood. Furthermore, the potential in vitro actions of Ï-6 and Ï-3 PUFA combined in the ratios available in supplements remains uncertain. Therefore, the objective of this study is to evaluate the functional activity of individual PUFAs, their combination in a specific ratio, and their endocannabinoid-related derivatives on TRPV1 and TRPA1 ion channels. METHODOLOGY: We employed a fluorescent calcium-sensitive dye in HEK-293 Flp-In T-REx cells expressing human TRPV1, TRPA1, or an empty vector to measure changes in intracellular calcium concentration ([Ca](i)). RESULTS: Capsaicin and PUFA derivatives such as docosahexaenoyl ethanolamide (DHEA), γ-linolenoyl ethanolamide (γ-LEA) and anandamide (AEA) stimulate TRPV1 activity directly, whereas eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and their 9:3:1 ratio triggered TRPV1 response only after prior exposure to phorbol ester. Cinnamaldehyde and PUFA derivatives such as eicosapentaenoyl ethanolamide (EPEA), DHEA, γ-LEA, 2-arachidonoylglycerol (2-AG), 2-arachidonoylglycerol ether (2-AG ether) and AEA triggered TRPA1 response, with EPA, DHA, γ-LA, and the 9:3:1 ratio showing significant effects at higher concentrations. CONCLUSIONS: PUFAs alone and their combined form in 9:3:1 ratio stimulate TRPA1 activity, whereas their metabolites trigger both TRPV1 and TRPA1 response. These findings suggest new avenues to explore for research into potential mechanisms underlying the neurological benefits of PUFAs and their metabolites.
Polyunsaturated fatty acids and their endocannabinoid-related metabolites activity at human TRPV1 and TRPA1 ion channels expressed in HEK-293 cells.
多不饱和脂肪酸及其内源性大麻素相关代谢物在 HEK-293 细胞中表达的人类 TRPV1 和 TRPA1 离子通道上的活性
阅读:4
作者:Abate Atnaf, Santiago Marina, Garcia-Bennett Alfonso, Connor Mark
| 期刊: | PeerJ | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 13:e19125 |
| doi: | 10.7717/peerj.19125 | 种属: | Human |
| 靶点: | TRPV1 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
