Establishing the biological basis of cognition and its disorders will require high precision spatiotemporal measurements of neural activity. Recently developed genetically encoded voltage indicators (GEVIs) report both spiking and subthreshold activity of identified neurons. However, maximally capitalizing on the potential of GEVIs will require imaging at millisecond time scales, which remains challenging with standard camera systems. Here, application of single photon avalanche diode (SPAD) sensors is reported to image neural activity at kilohertz frame rates. SPADs are electronic devices that when activated by a single photon cause an avalanche of electrons and a large electric current. An array of SPAD sensors is used to image individual neurons expressing the GEVI Voltron-JF525-HTL. It is shown that subthreshold and spiking activity can be resolved with shot noise limited signals at frame rates of up to 10Â kHz. SPAD imaging is able to reveal millisecond scale synchronization of neural activity in an ex vivo seizure model. SPAD sensors may have widespread applications for investigation of millisecond timescale neural dynamics.
Single Photon Kilohertz Frame Rate Imaging of Neural Activity.
单光子千赫兹帧率神经活动成像
阅读:4
作者:Tian Tian, Yuan Yifang, Mitra Srinjoy, Gyongy Istvan, Nolan Matthew F
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2022 | 起止号: | 2022 Nov;9(31):e2203018 |
| doi: | 10.1002/advs.202203018 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
