Dynamic remodeling of mitochondrial morphology through membrane dynamics are linked to changes in mitochondrial and cellular function. Although mitochondrial membrane fusion/fission events are frequent in cell culture models, whether mitochondrial membranes dynamically interact in postmitotic muscle fibers in vivo remains unclear. Furthermore, a quantitative assessment of mitochondrial morphology in intact muscle is lacking. Here, using electron microscopy (EM), we provide evidence of interacting membranes from adjacent mitochondria in intact mouse skeletal muscle. Electron-dense mitochondrial contact sites consistent with events of outer mitochondrial membrane tethering are also described. These data suggest that mitochondrial membranes interact in vivo among mitochondria, possibly to induce morphology transitions, for kiss-and-run behavior, or other processes involving contact between mitochondrial membranes. Furthermore, a combination of freeze-fracture scanning EM and transmission EM in orthogonal planes was used to characterize and quantify mitochondrial morphology. Two subpopulations of mitochondria were studied: subsarcolemmal (SS) and intermyofibrillar (IMF), which exhibited significant differences in morphological descriptors, including form factor (means ± SD for SS: 1.41 ± 0.45 vs. IMF: 2.89 ± 1.76, P < 0.01) and aspect ratio (1.97 ± 0.83 vs. 3.63 ± 2.13, P < 0.01) and circularity (0.75 ± 0.16 vs. 0.45 ± 0.22, P < 0.01) but not size (0.28 ± 0.31 vs. 0.27 ± 0.20 μm(2)). Frequency distributions for mitochondrial size and morphological parameters were highly skewed, suggesting the presence of mechanisms to influence mitochondrial size and shape. In addition, physical continuities between SS and IMF mitochondria indicated mixing of both subpopulations. These data provide evidence that mitochondrial membranes interact in vivo in mouse skeletal muscle and that factors may be involved in regulating skeletal muscle mitochondrial morphology.
Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study.
骨骼肌线粒体的形态、拓扑结构和膜相互作用:一项定量三维电子显微镜研究
阅读:3
作者:Picard Martin, White Kathryn, Turnbull Douglass M
| 期刊: | Journal of Applied Physiology | 影响因子: | 3.300 |
| 时间: | 2013 | 起止号: | 2013 Jan 15; 114(2):161-71 |
| doi: | 10.1152/japplphysiol.01096.2012 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
