Ketamine, an anesthetic, is a non-competitive antagonist of the calcium-permeable N-methyl-d-aspartate (NMDA) receptor. High concentrations of ketamine have been implicated in cardiotoxicity and neurotoxicity. Often, these toxicities are thought to be mediated by reactive oxygen species (ROS). However, findings to the contrary showing ketamine reducing ROS in mammalian cells and neurons in vitro, are emerging. Here, we determined the effects of ketamine on ROS levels in zebrafish larvae in vivo. Based on our earlier studies demonstrating reduction in ATP levels by ketamine, we hypothesized that as a calcium antagonist, ketamine would also prevent ROS generation, which is a by-product of ATP synthesis. To confirm that the detected ROS in a whole organism, such as the zebrafish larva, is specific, we used diphenyleneiodonium (DPI) that blocks ROS production by inhibiting the NADPH Oxidases (NOX). Upon 20âh exposure, DPI (5 and 10âμM) and ketamine at (1 and 2âmM) reduced ROS in the zebrafish larvae in vivo. Using acetyl l-carnitine (ALCAR), a dietary supplement, that induces mitochondrial ATP synthesis, we show elevated ROS generation with increasing ALCAR concentrations. Combined, ketamine and ALCAR counter-balanced ROS generation in the larvae suggesting that ketamine and ALCAR have opposing effects on mitochondrial metabolism, which may be key to maintaining ROS homeostasis in the larvae and affords ALCAR the ability to prevent ketamine toxicity. These results for the first time show ketamine's antioxidative and ALCAR's prooxidative effects in a live vertebrate.
Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo.
乙酰左旋肉碱在体内可阻止氯胺酮诱导的斑马鱼体内活性氧的减少
阅读:6
作者:Robinson Bonnie, Gu Qiang, Ali Syed F, Dumas Melanie, Kanungo Jyotshna
| 期刊: | Neuroscience Letters | 影响因子: | 2.000 |
| 时间: | 2019 | 起止号: | 2019 Jul 27; 706:36-42 |
| doi: | 10.1016/j.neulet.2019.05.009 | 种属: | Fish |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
