Nanopore sequencing allows identification of base modifications, such as methylation, directly from raw current data. Prevailing approaches, including deep learning (DL) methods, require training data covering all possible sequence contexts. These data can be prohibitively expensive or impossible to obtain for some modifications. Hence, research into DNA modifications focuses on the most prevalent modification in human DNA: 5mC in a CpG context. Improved generalization is required to reach the technology's full potential: calling any modification from raw current values. We developed ReQuant, an algorithm to impute full, k-mer based, modification models from limited k-mer context training data. ReQuant is highly accurate for calling modifications (CpG/GpC methylation and CpG glucosylation) in Lambda Phage R9 data when fitting on â¤25% of all possible 6-mers with a modification and extends to human R10 data. The success of our approach shows that DNA modifications have a consistent and therefore predictable effect on Nanopore current levels, suggesting that interpretable rule-based imputation in unseen contexts is possible. Our approach circumvents the need for modification-specific DL tools and enables modification calling when not all sequence contexts can be obtained, opening a vast field of biological base modification research.
ReQuant: improved base modification calling by k-mer value imputation.
ReQuant:通过 k-mer 值插补改进碱基修饰调用
阅读:3
作者:Straver Roy, Vermeulen Carlo, Verity-Legg Joe R, Pagès-Gallego Marc, Stoker Dieter G G, van Oudenaarden Alexander, de Ridder Jeroen
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2025 | 起止号: | 2025 May 10; 53(9):gkaf323 |
| doi: | 10.1093/nar/gkaf323 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
