Plants have significant potential as recombinant protein expression chassis, as they can produce complex post-translationally modified proteins that are unobtainable using prokaryotic production systems, with almost limitless scalability and substantially reduced costs relative to eukaryotic cell cultures. Transient protein expression reduces the time taken between transformation and recombinant protein extraction and purification, however low protein yields relative to conventional stable expression systems remain a major obstacle. Here, we have assessed the effectiveness of combining several established genetic components, including a promoter, 5' UTR, 3' UTR, double terminator, and matrix attachment region, to modify the TMV-based pJL-TRBO expression vector for improved recombinant protein expression in plants. Using enhanced green fluorescent protein (eGFP) as a reporter, we quantified expression using fluorescence imaging in planta together with SDS-PAGE and western blotting and showed that our optimum construct resulted in a significant increase relative to pJL-TRBO-eGFP. This increase was exclusively due to the presence of the additional 5' UTR. We anticipate that our expression constructs will be a useful tool for high-yield plant recombinant protein production and may serve as a template for further improvements.
Incorporation of regulatory DNA elements within a viral vector improves recombinant protein expression in plants.
将调控DNA元件整合到病毒载体中可以提高植物中重组蛋白的表达
阅读:3
作者:Coates Ryan J, Scofield Simon, Young Mark T
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 21; 14(1):28865 |
| doi: | 10.1038/s41598-024-80444-9 | 种属: | Viral |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
