Numerical Analysis of Micro-Residual Stresses in a Carbon/Epoxy Polymer Matrix Composite during Curing Process.

碳/环氧聚合物基复合材料固化过程中微观残余应力的数值分析

阅读:3
作者:Gonçalves Paulo Teixeira, Arteiro Albertino, Rocha Nuno, Pina Luis
The manufacturing process in thermoset-based carbon fiber-reinforced polymers (CFRPs) usually requires a curing stage where the material is transformed from a gel state to a monolithic solid state. During the curing process, micro-residual stresses are developed in the material due to the different chemical-thermal-mechanical properties of the fiber and of the polymer, reducing the mechanical performance of the composite material compared to the nominal performance. In this study, computational micromechanics is used to analyze the micro-residual stresses development and to predict its influence on the mechanical performance of a pre-impregnated unidirectional CFRP made of T700-fibers and an aeronautical grade epoxy. The numerical model of a representative volume element (RVE) was developed in the commercial software Abaqus(®) and user-subroutines are used to simulate the thermo-curing process coupled with the mechanical constitutive model. Experimental characterization of the bulk resin properties and curing behavior was made to setup the models. The higher micro-residual stresses occur at the thinner fiber gaps, acting as triggers to failure propagation during mechanical loading. These micro-residual stresses achieve peak values above the yield stress of the resin 55 MPa, but without achieving damage. These micro-residual stresses reduce the transverse strength by at least 10%, while the elastic properties remain almost unaffected. The numerical results of the effective properties show a good agreement with the macro-scale experimentally measured properties at coupon level, including transverse tensile, longitudinal shear and transverse shear moduli and strengths, and minor in-plane and transverse Poisson's ratios. A sensitivity analysis was performed on the thermal expansion coefficient, chemical shrinkage, resin elastic modulus and cure temperature. All these parameters change the micro-residual stress levels and reduce the strength properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。