Adeno associated virus (AAV)-mediated delivery of CRISPR associated nucleases (AAV-CRISPR) is a promising solution to treat genetic diseases such as Duchenne Muscular Dystrophy (DMD) and is now in early clinical trials. However, genotoxicity and immunogenicity concerns have hindered clinical translation. Due to the complex etiology associated with DMD, the post-transduction consequences of double-stranded breaks induced by AAV-CRISPR in disease models are unclear. This barrier is partially conferred by conventional sequencing methods where common outcomes of AAV-CRISPR editing often escape detection. However, recent reports of novel long-read sequencing approaches permit comprehensive variant detection using a broader sequence context. Here, we comprehensively investigated genomic and transcriptomic post-AAV-CRISPR transduction consequences in myoblast cells and a DMD mouse model following intramuscular and intravenous AAV-CRISPR therapy using both long- and short-read sequencing techniques. Structural variant characterization indicates that unintended on-target large insertions and inversions are common editing outcomes. We demonstrate that combining adaptive sampling with nanopore Cas9-targeted sequencing (AS-nCATS) for long-read quantification of AAV integration is synergistic for detecting difficult-to-amplify editing events. This unbiased data suggests that full-length AAV integration is equally as probable as the on-target deletion. Further, we develop a Nanopore Rapid Amplification of cDNA Ends (nRACE-seq) pipeline for long-read detection of unknown 5' or 3' ends of edited transcripts. The nRACE-seq approach effectively detects the presence of AAV-Dmd chimeric transcripts, erroneous splicing events, and off-target AAV integration sites. In summary, our findings offer insights into the adaptation of AAV-CRISPR DSB-mediated therapeutics for monogenic diseases and promote the standardization of CRISPR evaluation. We highlight the importance of coupling polymerase-based and polymerase-free methods in long-read sequencing to assess editing outcomes as the field progresses toward clinical applications.
Beyond the Cut: Long-read sequencing reveals complex genomic and transcriptomic changes in AAV-CRISPR therapy for Duchenne Muscular Dystrophy.
超越切割:长读测序揭示了 AAV-CRISPR 疗法治疗杜氏肌营养不良症中复杂的基因组和转录组变化
阅读:9
作者:Jia Mary S, Padmaswari Made Harumi, Burcham Landon A, Agrawal Shilpi, Bulliard Gabrielle N, Stokes Abbey L, Nelson Christopher E
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Aug 1 |
| doi: | 10.1101/2025.08.01.668007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
