Feasibility of Therapeutic Ultrasound Application in Topical Scleral Delivery of Avastin.

治疗性超声在巩膜局部给药阿瓦斯汀中的应用可行性

阅读:5
作者:Almogbil Hanaa H, Nasrallah Fadi P, Zderic Vesna
PURPOSE: Macromolecules have been shown to be effective in vision-saving treatments for various ocular diseases, such as age-related macular degeneration and diabetic retinopathy. The current delivery of macromolecules requires frequent intraocular injections and carries a risk of serious adverse effects. METHODS: We tested the application of therapeutic ultrasound as a minimally invasive approach for the delivery of Avastin into the diseased regions of the eye. Avastin (bevacizumab) is an anti-vascular endothelial growth factor (VEGF) antibody with a molecular weight of 149 kDa. We tested the effectiveness and safety of Avastin delivery through rabbit sclera in vitro using a standard diffusion cell model. Ultrasound at frequencies of 400 kHz or 3 MHz with an intensity of 1 W/cm2 was applied for the first 5 minutes of 1-hour drug exposure. Sham treatments mimicked the ultrasound treatments, but ultrasound was not turned on. Absorbance measurements of the receiver compartment solution were performed at 280 nm using a spectrophotometer. RESULTS: Absorbance measurements indicated no statistical difference between the sham (n = 13) and 400 kHz ultrasound group (n = 15) in the delivery of Avastin through the sclera. However, the absorbance values were statistically different (P < 0.01) between the 3 MHz ultrasound group (0.004, n = 8) and the matched sham group (0.002, n = 7). There was 2.3 times increase in drug delivery in the 3 MHz ultrasound when compared to the corresponding sham group. Histological studies indicated no significant damage in the ultrasound-treated sclera due to ultrasound application. CONCLUSIONS: Our preliminary results provided support that therapeutic ultrasound may be effective in the delivery of Avastin through the sclera. TRANSLATIONAL RELEVANCE: Our study offers clinical potential for a minimally invasive retinopathy treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。