Identification of Quiescent Cells in a Zebrafish T-Cell Acute Lymphoblastic Leukemia Model Using Cell Proliferation Staining.

利用细胞增殖染色法鉴定斑马鱼T细胞急性淋巴细胞白血病模型中的静止细胞

阅读:4
作者:Al-Hamaly Majd A, Chernyavskaya Yelena, Blackburn Jessica S
Cellular quiescence is a state of growth arrest or slowed proliferation that is described in normal and cancer stem cells (CSCs). Quiescence may protect CSCs from antiproliferative chemotherapy drugs. In T-cell acute lymphoblastic leukemia (T-ALL) patient-derived xenograft (PDX) mouse models, quiescent cells are associated with treatment resistance and stemness. Cell proliferation dyes are popular tools for the tracking of cell division. The fluorescent dye is covalently anchored into amine groups on the membrane and macromolecules inside the cell. This allows for the tracking of labeled cells for up to 10 divisions, which can be resolved by flow cytometry. Ultimately, cells with the highest proliferation rates will have low dye retention, as it will be diluted with each cell division, while dormant, slower-dividing cells will have the highest retention. The use of cell proliferation dyes to isolate dormant cells has been optimized and described in T-ALL mouse models. Complementary to the existing mouse models, the rag2:Myc-derived zebrafish T-ALL model provides an excellent venue to interrogate self-renewal in T-ALL due to the high frequency of leukemic stem cells (LSCs) and the convenience of zebrafish for large-scale transplant experiments. Here, we describe the workflow for the staining of zebrafish T-ALL cells with a cell proliferation dye, optimizing the concentration of the dye for zebrafish cells, passaging successfully stained cells in vivo, and the collection of cells with varying levels of dye retention by live cell sorting from transplanted animals. Given the absence of well-established cell surface makers for LSCs in T-ALL, this approach provides a functional means to interrogate quiescent cells in vivo. For representative results, we describe the engraftment efficiency and the LSC frequency of high and low dye-retaining cells. This method can help investigate additional properties of quiescent cells, including drug response, transcriptional profiles, and morphology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。