Detection of immunoglobulins in a laser induced fluorescence system utilizing polydimethysiloxane microchips with advanced surface and optical properties.

利用具有先进表面和光学特性的聚二甲基硅氧烷微芯片,在激光诱导荧光系统中检测免疫球蛋白

阅读:3
作者:Schrott Walter, Nebyla Marek, Přibyl Michal, Snita Dalimil
We developed an automated laser induced fluorescence system utilizing microfluidic chips for detection and quantification of immunoglobulins. Microchips were fabricated from polydimethysiloxane (PDMS) using the so-called "prepolymerization technique." The microchip structure helped minimize the effects of PDMS autofluorescence and light scattering. Furthermore, a thin and uniform PDMS layer forming the top of the microchip enabled proper focusing and collection of the excitation beam and the emitted fluorescence, respectively. The developed system was tested for the detection of mouse immunoglobulins. The capturing antibodies were immobilized on internal microchannel walls in the form of a polyelectrolyte. We clearly show that this immobilization technique, if correctly realized, gives results with high reproducibility. After sample incubation and washing, secondary antibodies labeled by fluorescein isothiocyanate were introduced into microchannels to build a detectable complex. We show that mouse antibodies can be quantified in a wide concentration range, 0.01-100 μg ml(-1). The lower detection limit was below 0.001 μg ml(-1) (6.7 pM). The developed laser induced fluorescence (LIF) apparatus is relatively cheap and easy to construct. The total cost of the developed LIF detector is lower than a typical price of plate readers. If compared to classical ELISA (enzyme linked immunosorbent assay) plate systems, the detection of immunoglobulins or other proteins in the developed PDMS microfluidic device brings other important benefits such as reduced time demands (10 min incubation) and low reagent consumption (less than 1 μl). The cost of the developed PDMS chips is comparable with the price of commercial ELISA plates. The main troubleshooting related to the apparatus development is also discussed in order to help potential constructors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。