Parkinson's disease (PD) is a neurological condition that worsens with age (i.e., 1% of people over 65) with no permanent cure. Hence, finding a disease-modifying agent with fewer undesirable side effects is urgently needed. Parkinson's disease (PD) pathology results in the degeneration of dopaminergic (DAergic) neurons by accumulating lewy bodies, alpha-synuclein (-syn), lowering anti-oxidants, increasing neuronal inflammation, and altering neuron shape. A well-researched natural substance called Withania somnifera (WS) has a potent anti-oxidative, anti-inflammatory, and anti-neurodegenerative impact. WS, sometimes called as Indian Ginseng, is a subtropical undershrub of the Solanaceae family together with Ashwagandha. In the current work, EWSR's anti-inflammatory and neuroprotective efficacy was assessed in relation to rotenone-induced oxidative stress (i.e., LPO, CAT, and SOD and GSH), microglial activation, and neurodegeneration in the rotenone rat PD model. In ROT-induced brains, EWSR therapy resulted in a considerable decrease in LPO and increased levels of the antioxidants SOD, CAT, and GSH. Furthermore, our research showed that the intraperitoneal treatment of EWSR (40 mg/kg) in rotenone-induced rats reduced microglial activation and neuron loss in the substantia nigra (SN) and hippocampus caused by rotenone-induced neurotoxicity. Based on the observations, EWSR can be considered as an excellent source for neuroprotection, due to its significant anti-oxidative, anti-inflammatory, anti-neurodegenerative and anti-microglial properties when administered individually and in combination with known anti-inflammatory compounds (Doxycycline and Ellagic acids). But, further research is required before replacing the known neuroprotective treatments with phytochemical treatments.
Anti oxidative/neuro-inflammation properties of Withania somnifera root extract on rotenone induced stress in rat brain.
睡茄根提取物对鱼藤酮诱导的大鼠脑应激的抗氧化/神经炎症特性
阅读:4
作者:Epuri Vishala, Prathap Lavanya, Reddy Venkateshwar, Krishnan Madhan
| 期刊: | Bioinformation | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Jun 30; 19(6):729-738 |
| doi: | 10.6026/97320630019729 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
