Stabilization of Expansive Soils Using Cement-Zeolite Mixtures: Experimental Study and Lasso Modeling.

利用水泥-沸石混合物稳定膨胀土:实验研究和 Lasso 模型

阅读:4
作者:Umar Ibrahim Haruna, Abubakar Sale, Bello Abdullahi Balarabe, Lin Hang, Hassan Jubril Izge, Cao Rihong
The stabilization of expansive soils is crucial for the construction projects to mitigate swelling, shrinkage, and bearing capacity issues. This study investigates the synergistic effects of cement and clinoptilolite zeolite on stabilizing high-plasticity clay (CH) soil from Kano State, Nigeria. A total of 30 admixture combinations-cement (0-8%) and zeolite (0-15%)-were tested via standardized laboratory methods to evaluate their free swell index (FSI), swell percentage, swell pressure, shrinkage, and California Bearing Ratio (CBR). Principal component (Lasso) "least absolute shrinkage and selection operator" regression modeled interactions between admixtures and soil properties. The key results include the following: (1) 6% cement + 12% zeolite reduced the FSI by 60% (45 → 18); (2) 8% cement + 15% zeolite decreased the swell percentage by 47.8% (22.5% → 11.75%); (3) 6% cement + 12% zeolite lowered swell pressure by 54.2% (240 kPa → 110 kPa); (4) 8% cement + 12% zeolite reduced shrinkage by 50% (5.6% → 2.8%); and (5) 6% cement + 9% zeolite achieved an unsoaked CBR of 80.01% and soaked CBR of 72.79% (resilience ratio: 0.8010). PCLR models explained 93.5% (unsoaked) and 75.0% (soaked) of the CBR variance, highlighting how zeolite's mediation analysis indicates that zeolite improves the bearing capacity mainly by reducing the free swell index (path coefficient = -0.91429, p < 0.0001), while conditional process modeling provided greater explanatory power (R(2) = 0.745) compared to moderation-only analysis (R(2) = 0.618). This study demonstrates that zeolite-cement blends optimize strength and resilience in expansive soils, with implications for sustainable infrastructure in arid and semi-arid regions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。