Neuronal communication relies on synaptic vesicle recycling, which has long been investigated by live imaging approaches. Synapto-pHluorins, genetically encoded reporters that incorporate a pH-sensitive variant of GFP within the lumen of the synaptic vesicle, have been especially popular. However, they require genetic manipulation, implying that a tool combining their excellent reporter properties with the ease of use of classical immunolabeling would be desirable. We introduce this tool here, relying on primary antibodies against the luminal domain of synaptotagmin 1, decorated with secondary single-domain antibodies (nanobodies) carrying a pHluorin moiety. The application of the antibodies and nanobodies to cultured neurons results in labeling their recycling vesicles, without the need for any additional manipulations. The labeled vesicles respond to stimulation, in the expected fashion, and the pHluorin signals enable the quantification of both exo- and endocytosis. We conclude that pHluorin-conjugated secondary nanobodies are a convenient tool for the analysis of vesicle recycling.
PHluorin-conjugated secondary nanobodies as a tool for measuring synaptic vesicle exocytosis and endocytosis.
PHluorin 偶联的二级纳米抗体作为测量突触囊泡胞吐和胞吞作用的工具
阅读:5
作者:Georgiev Svilen V, Rizzoli Silvio O
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 15(1):10093 |
| doi: | 10.1038/s41598-025-92703-4 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
