IL-1R1 signaling in TBI: assessing chronic impacts and neuroinflammatory dynamics in a mouse model of mild closed-head injury.

IL-1R1 信号在 TBI 中的作用:评估轻度闭合性颅脑损伤小鼠模型中的慢性影响和神经炎症动态

阅读:8
作者:Vincent Jonathan C, Garnett Colleen N, Watson James B, Higgins Emma K, Macheda Teresa, Sanders Lydia, Roberts Kelly N, Shahidehpour Ryan K, Blalock Eric M, Quan Ning, Bachstetter Adam D
Neuroinflammation contributes to secondary injury cascades following traumatic brain injury (TBI), with alternating waves of inflammation and resolution. Interleukin-1 (IL-1), a critical neuroinflammatory mediator originating from brain endothelial cells, microglia, astrocytes, and peripheral immune cells, is acutely overexpressed after TBI, propagating secondary injury and tissue damage. IL-1 affects blood-brain barrier permeability, immune cell activation, and neural plasticity. Despite the complexity of cytokine signaling post-TBI, we hypothesize that IL-1 signaling specifically regulates neuroinflammatory response components. Using a closed-head injury (CHI) TBI model, we investigated IL-1's role in the neuroinflammatory cascade with a new global knock-out (gKO) mouse model of the IL-1 receptor (IL-1R1), which efficiently eliminates all IL-1 signaling. We found that IL-1R1 gKO attenuated behavioral impairments 14 weeks post-injury and reduced reactive microglia and astrocyte staining in the neocortex, corpus callosum, and hippocampus. We then examined whether IL-1R1 loss altered acute neuroinflammatory dynamics, measuring gene expression changes in the neocortex at 3, 9, 24, and 72 h post-CHI using the NanoString Neuroinflammatory panel. Of 757 analyzed genes, IL-1R1 signaling showed temporal specificity in neuroinflammatory gene regulation, with major effects at 9 h post-CHI. IL-1R1 signaling specifically affected astrocyte-related genes, selectively upregulating chemokines like Ccl2, Ccl3, and Ccl4, while having limited impact on cytokine regulation, such as Tnfα. This study provides further insight into IL-1R1 function in amplifying the neuroinflammatory cascade following CHI in mice and demonstrates that suppression of IL-1R1 signaling offers long-term protective effects on brain health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。