Multi-omic assessment of mRNA translation dynamics in liver cancer cell lines.

肝癌细胞系中mRNA翻译动态的多组学评估

阅读:7
作者:González Asier, Pandey Muskan, Schlusser Niels, Rahaman Sayanur, Ataman Meric, Mittal Nitish, Schmidt Alexander, Becskei Attila, Zavolan Mihaela
The limited correlation between mRNA and protein levels within cells highlighted the need to study mechanisms of translational control. To decipher the factors that determine the rates of individual steps in mRNA translation, machine learning approaches are currently applied to large libraries of synthetic constructs, whose properties are generally different from those of endogenous mRNAs. To fill this gap and thus enable the discovery of elements driving the translation of individual endogenous mRNAs, we here report steady-state and dynamic multi-omics data from human liver cancer cell lines, specifically (i) ribosome profiling data from unperturbed cells as well as following the block of translation initiation (ribosome run-off, to trace translation elongation), (ii) protein synthesis rates estimated by pulsed stable isotope labeled amino acids in cell culture (pSILAC), and (iii) mean ribosome load on individual mRNAs determined by mRNA sequencing of polysome fractions (polysome profiling). These data will enable improved predictions of mRNA sequence-dependent protein output, which is crucial for engineering protein expression and for the design of mRNA vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。