A mesenchyme-free culture system to elucidate the mechanism of otic vesicle morphogenesis.

建立无间充质培养系统以阐明耳囊形态发生的机制

阅读:10
作者:Miura Takashi, Shiota Kohei, Morriss-Kay Gillian
The vertebrate inner ear has been extensively studied as a model system of morphogenesis and differentiation. The interactions between epithelium and surrounding mesenchyme have not previously been studied directly, because an appropriate experimental system had not been established. Here we describe a mesenchyme-free culture system of E11.5 mouse otic vesicle which retains the ability for (1) formation of the cochlear loop, (2) emigration of ganglion cells from the epithelium and (3) invagination of semicircular canal epithelium. E10.5 otic vesicle was maintained using the same method, but morphogenesis was less successful. Culture of the E11.5 cochlear region alone resulted in regeneration of a structure with semicircular canal character from the cut end, indicating that region-specific cell fate within the otic vesicle is not irreversibly determined at this stage. Co-culturing otic vesicle with cochleovestibular ganglion (CVG) resulted in enhanced looping or ectopic diverticulum formation of the cochlear region, suggesting that the CVG provides a morphogenetic signal for cochlear looping. Cochlear looping was specifically blocked by inhibiting actin polymerization by cytochalasin D, while morphogenesis of the semicircular canal region remained intact. Hyaluronidase treatment inhibited semicircular canal morphogenesis, resulting in a cystic form of the otic vesicle. These data validate this culture system as a tool for elucidating the mechanism of morphogenesis of the otic vesicle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。