A novel approach for synthesizing silver nanoparticles with antibacterial and cytotoxic activities using the leaf extract of hydroponically grown Moringa oleifera.

利用水培辣木叶提取物合成具有抗菌和细胞毒活性的银纳米粒子的新方法

阅读:8
作者:Aghajanyan Anush, Timotina Marina, Manutsyan Tatevik, Harutyunyan Ani, Ginovyan Mikayel, Schubert Robin, Aydinyan Sofiya, Trchounian Karen, Gabrielyan Lilit, Gabrielyan Liana
Novel approaches for producing silver nanoparticles (Ag-NPs), which are widely used in biomedicine, biotechnology, and agriculture, are of considerable importance. This study highlights a simple and cost-effective biological method for the synthesis of Ag-NPs using the leaf extract of the hydroponically cultivated Moringa oleifera (MOAg-NPs), alongside the analysis of the biosynthesized NPs. One of the advantages of hydroponic cultivation over traditional soil-based methods is that plants are cleaner since they are not in contact with soil and can be cultivated with fewer chemical inputs. For characterization of the biosynthesized MOAg-NPs various methods have been used, such as UV-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. UV-Vis analysis revealed a prominent peak at 465 nm, indicating the synthesis of MOAg-NPs. TEM analysis demonstrated a spherical shape of MOAg-NPs with an average diameter of 10.0 ± 6.0 nm. The XRD pattern displayed Ag peaks at 2θ values corresponding to (111), (200), (220) and (311) reflections. The antibacterial efficacy of MOAg-NPs was assessed against Gram-positive (Enterococcus hirae, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), revealing their antibacterial potential at low concentrations. The general inhibitory mechanism of MOAg-NPs focuses on the energy-dependent total and N, N'-dicyclohexylcarbodiimide (DCCD)-sensitive H(+)-fluxes across the bacterial membrane. Moreover, the application of MOAg-NPs resulted in substantial inhibition of HeLa cells growth. Thus, Ag-NPs synthesized using hydroponically grown M. oleifera leaf extract exhibited cytotoxicity against cancer cells and antibacterial properties, highlighting their potential use in biomedicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。