BACKGROUND: The kallikrein-kinin system (KKS) is a complex biochemical pathway that plays a crucial role in regulating several physiological processes, including inflammation, coagulation, and blood pressure. Dysregulation of the KKS has been associated with several pathological conditions such as hereditary angioedema (HAE), hypertension, and stroke. Developing an accurate quantitative model of the KKS may provide a better understanding of its role in health and disease and facilitate the rapid and targeted development of effective therapies for KKS-related disorders. OBJECTIVES: Here, we present a novel, detailed mechanistic model of the plasma KKS, elucidating the processes of Factor XII (FXII) activation, the kallikrein feedback loop, cleavage of high molecular weight kininogen leading to bradykinin (BK) production, and the impact of inhibitors. METHODS: The model incorporates both surface and solution-phase reactions of all proteins in the KKS, describing how binding site concentration affects the rate of surface reactions. The model was calibrated and validated using a variety of published and in-house experimental datasets, which encompass a range of dextran sulphate (DXS) concentrations to initiate contact activation and various KKS inhibitors to block bradykinin production. RESULTS: Our mathematical model showed that a trace amount of activated FXII is required for subsequent FXII activation. The model also reveals a bell-shaped curve relationship between the activation of the KKS and the number of DXS surface binding sites. Simulations of BK generation in healthy and HAE plasma demonstrated the impact of C1 esterase inhibitor (C1inh) deficiency via increased peak BK levels and accelerated formation in HAE plasma. The efficacy of KKS inhibitors, such as CSL312, ecallantide, and C1inh, was also evaluated, with CSL312 showing the most potent inhibition of BK generation. CONCLUSIONS: The present model represents a valuable framework for studying the intricate interactions within the plasma KKS and provides a better understanding of the mechanism of action of various KKS-targeted therapies.
A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
体外血浆活化机制模型,用于评价治疗性激肽释放酶-激肽系统抑制剂
阅读:3
作者:Rezvani-Sharif Alireza, Lioe Hadi, Dower Steven K, Pelzing Matthias, Panousis Con, Harvie Dalton J E, Muir Ineke L
| 期刊: | PLoS Computational Biology | 影响因子: | 3.600 |
| 时间: | 2024 | 起止号: | 2024 Nov 4; 20(11):e1012552 |
| doi: | 10.1371/journal.pcbi.1012552 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
