Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and β-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.
The Aneugenicity of Ketone Bodies in Colon Epithelial Cells Is Mediated by Microtubule Hyperacetylation and Is Blocked by Resveratrol.
酮体在结肠上皮细胞中的非整倍体生成作用是由微管过度乙酰化介导的,并且可被白藜芦醇阻断
阅读:2
作者:Sudo Haruka, Kubo Akira
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2021 | 起止号: | 2021 Aug 30; 22(17):9397 |
| doi: | 10.3390/ijms22179397 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
