BACKGROUND: Systemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. METHODS AND RESULTS: EA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H(1) receptor antagonist, but not by H(2) or H(3/4) receptor antagonists. Moreover, an H(1)-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H(2)-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. CONCLUSION: Histamine induces HMGB1 release from vascular endothelial cells solely through H(1) receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis.
Histamine induced high mobility group box-1 release from vascular endothelial cells through H(1) receptor.
组胺通过 H(1) 受体诱导血管内皮细胞释放高迁移率族蛋白-1
阅读:4
作者:Gao Shangze, Liu Keyue, Ku Wenhan, Wang Dengli, Wake Hidenori, Qiao Handong, Teshigawara Kiyoshi, Nishibori Masahiro
| 期刊: | Frontiers in Immunology | 影响因子: | 5.900 |
| 时间: | 2022 | 起止号: | 2022 Oct 5; 13:930683 |
| doi: | 10.3389/fimmu.2022.930683 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
