Connexin 43 (Cx43) plays a crucial role in maintaining synchronous contraction in the heart. However, it remains unclear whether Cx43 directly influences the contractile force and synchrony of entire cardiac tissues. Previously, we successfully developed human-induced pluripotent stem cell (hiPSC)-derived cardiac tissues capable of directly measuring both the contractile force of the entire tissue and cellular synchrony within it. This study aimed to evaluate whether regulating GJA1, the gene encoding Cx43, could enhance contractility and synchrony in these tissues. Using adeno-associated virus (AAV), we mediated GJA1 overexpression (OE) or knockdown (shGJA1) in bioengineered hiPSC-derived cardiac tissues. Under electrical stimulation at 60 ppm, there were no significant differences in contractile force between the AAV-GJA1-OE and control tissues (0.78 ± 0.39 vs. 0.98 ± 0.43 mN, p = 0.32). Synchrony levels were also similar between these groups (p = 0.20). In contrast, shGJA1 tissues demonstrated significantly higher contractile force compared to scramble controls (1.55 ± 0.38 vs. 1.20 ± 0.15 mN, p = 0.039), although the difference in synchrony was not statistically significant (p = 0.08). RNA sequencing data revealed that a total of 37,199 genes were detected, comparing AAV6-GFP control and GJA1-OE treated hiPSC-CMs, as well as AAV6-shRNA scramble and shGJA1 treated hiPSC-CMs. We highlighted several candidate genes potentially contributing to the enhanced contractile force observed in the shGJA1 group. Furthermore, nineteen common genes were identified between the upregulation of shGJA1 compared to scramble and downregulation of GJA1-OE compared to control, which were associated with cell proliferation, transcription, contraction, and BMP signaling pathways. In conclusion, Cx43-OE did not appear to influence contractility and synchrony, meanwhile, Cx43 suppression may effectively improve contractility without impairing the synchrony in the entire cardiac tissues. Cx43 expression beyond a certain threshold may be sufficient to maintain synchronous contraction in the tissues.
Connexin 43 suppression enhances contractile force in human iPSC-derived cardiac tissues.
连接蛋白 43 抑制可增强人类 iPSC 衍生心脏组织的收缩力
阅读:3
作者:Takada Takuma, Matsuura Katsuhisa, Iida Tatsuro, Koike Toshiharu, Sekine Hidekazu, Higashi Yuhei, Hara Tsukasa, Sasaki Daisuke, Fujita Kyohei, Hinata Yuto, Yamaguchi Junichi, Shimizu Tatsuya
| 期刊: | Frontiers in Bioengineering and Biotechnology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Aug 8; 13:1615953 |
| doi: | 10.3389/fbioe.2025.1615953 | 种属: | Human |
| 研究方向: | 心血管 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
