DNA methylation plays a crucial role in the pathogenesis of myocardial ischemia reperfusion injury(I/R) and the I/R injury can be combated effectively by ischemia preconditioning (IPC), but the role is DNA methylation in this process is unknown. In this study, we uncovered the role of ischemic preconditioning (IPC)- mediated cardioprotection of rat myocardium by using a Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion. Heart conditioned with short cycles of ischemia and reperfusion (IPC procedure) prior to I/R protocol significantly reduced the I/R-induced global DNA hypermethylation level by 32% and the DNMT activity by 33% while rendering cardioprotection. Blocking the PI3K pathway via wortmannin not only negates the cardio-protection by IPC, but also increases the methylation of DNA by 75%. Besides, the correlation analysis showed a negative relationship between PI3K gene expression and the global DNA methylation level (râ=â- 0.8690, pâ=â0.0419) in IPC-treated rat hearts. Moreover, the global level DNA hypomethylation induced by IPC exhibited a regulatory effect on the genes involved in I/R pathology mediators like apoptosis (Caspase3), mitochondrial function (PGC 1α, TFAM, ND1) and oxidative stress (CuZnSOD, SOD2), and their corresponding function. The present study results provide novel evidence for the involvement of DNA methylation in the IPC procedure, and suggest DNA methylation as one of the potential therapeutic targets regulated by ischemic preconditioning in rat hearts subjected to ischemia reperfusion. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-024-03965-0.
Ischemic preconditioning modulates the DNA methylation process of the rat heart to provide tolerance to withstand ischemia reperfusion injury and its associated mitochondrial dysfunction.
缺血预适应调节大鼠心脏的 DNA 甲基化过程,从而提供耐受性以抵抗缺血再灌注损伤及其相关的线粒体功能障碍
阅读:4
作者:Boovarahan Sri Rahavi, Kurian Gino A
| 期刊: | 3 Biotech | 影响因子: | 2.900 |
| 时间: | 2024 | 起止号: | 2024 Apr;14(4):121 |
| doi: | 10.1007/s13205-024-03965-0 | 种属: | Rat |
| 研究方向: | 心血管 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
