LMNA R482L mutation causes impairments in C2C12 myoblasts subpopulations, alterations in metabolic reprogramming during differentiation, and oxidative stress.

LMNA R482L 突变导致 C2C12 成肌细胞亚群受损、分化过程中代谢重编程改变以及氧化应激

阅读:9
作者:Ivanova Oksana A, Predeus Alexander V, Sorokina Margarita Y, Ignatieva Elena V, Bobkov Danila E, Sukhareva Kseniia S, Kostareva Anna A, Dmitrieva Renata I
LMNA mutations causing classical familial partial lipodystrophy of Dunnigan type (FPLD2) usually affect residue R482. FPLD is a severe metabolic disorder that often leads to cardiovascular and skeletal muscle complications. How LMNA mutations affect the functional properties of skeletal muscles is still not well understood. In the present project, we investigated the LMNA-R482L mutation-specific alterations in a transgenic mouse C2C12 cell line of myoblasts. Using single-cell RNA sequencing we have studied transcriptional diversity of cultured in vitro C2C12 cells. The LMNA-R482L mutation induces changes in C2C12 cluster composition and increases the expression of genes related to connective tissue development, oxidative stress, stress defense, and autophagy in a population-specific manner. Bulk RNA-seq confirmed these results and revealed the dysregulation of carbohydrate metabolism in differentiated R482L myotubes that was supported by ATP production profile evaluation. The measurement of reactive oxygen species (ROS) levels and glutathione accumulation in myoblasts and myotubes indicates R482L mutation-related dysregulation in mechanisms that control ROS production and scavenging through antioxidant glutathione system. The increased accumulation of autophagy-related structures in R482L myoblasts was also shown. Overall, our experiments showed a connection between the redox status and metabolic alterations with skeletal muscle pathological phenotypes in cells bearing pathogenic LMNA mutation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。