Profiling membrane glycerolipids during γ-ray-induced membrane injury.

分析γ射线诱导膜损伤过程中膜甘油酯的变化

阅读:3
作者:Zheng Guowei, Li Weiqi
BACKGROUND: γ-rays are high-energy radiation that cause a range of random injuries to plant cells. Most studies on this issue have focused on γ-ray-induced nucleotide damage and the production of reactive oxygen species in cells, so little is known about the glycerolipid metabolism during γ-rays induced membrane injury. Using an ESI-MS/MS-based lipidomic method, we analysed the lipidome changes in wild-type and phospholipase D (PLD)δ- and α1-deficient Arabidopsis after γ-ray treatment. The aim of this study was to investigate the role of PLD-mediated glycerolipid metabolism in γ-ray-induced membrane injury. RESULTS: The ion leakage of Arabidopsis leaves after 2885-Gy γ-ray treatment was less than 10%. High does γ-ray treatment could induce the accumulation of intracellular reactive oxygen species (ROS). Inhibition of PLDα1 caused severe lipid degradation under γ-ray treatment. γ-ray-induced glycerolipid degradation mostly happened in chloroplastidic lipids, rather than extraplastidic ones. The levels of lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) were maintained in the WS ecotypes during γ-ray treatments, while increased significantly in the Col ecotype treated with 1100 Gy. After 210- and 1100-Gy γ-ray treatments, the level of lysophosphatidylglycerol (lysoPG) decreased significantly in the four genotypes of Arabidopsis. CONCLUSIONS: γ-ray-induced membrane injury may occur via an indirect mechanism. The degradation of distinct lipids is not synchronous, and that interconversions among lipids can occur. During γ-ray-induced membrane injury, the degradation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) may be mediated by PLDζ1 or phospholipase A1. The degradation of phosphatidylglycerol was not mediated by PLA, PLDδ or PLDα1, but by phospholipase C or other PLDs. γ-rays can decrease the double-bond index and increase the acyl chain length in membrane lipids, which may make membranes more rigid and further cause injury in membranes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。