Experimental and Numerical Study of Healing Effect on Delamination Defect in Infusible Thermoplastic Composite Laminates.

不可熔热塑性复合材料层合板分层缺陷愈合效应的实验和数值研究

阅读:4
作者:Griskevicius Paulius, Spakauskas Kestutis, Mahato Swarup, Grigaliunas Valdas, Raisutis Renaldas, Eidukynas Darius, Perkowski Dariusz M, Vilkauskas Andrius
The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their glass transition temperature under pressure. In the current investigation, the composite is comprised of Methyl methacrylate (MMA)-based infusible lamination resin combined with benzoyl peroxide initiator, which polymerizes into a Polymethyl methacrylate (PMMA) matrix. For the reinforcement, unidirectional 220 gr/m(2) glass filament fabric was used. Delamination damage is artificially induced during the fabrication of laminate plates. The distributed delamination region before and after thermally activated healing was determined by using non-destructive testing with active thermography. An experimental approach is employed to characterize the thermal healing effect on mechanical properties. Experimentally determined technological parameters for thermal healing have been successfully applied to repair delamination defects on composite plates. Based on the compression-after-impact (CAI) test methodology, the intact, damaged, and healed composite laminates were loaded cyclically to evaluate the healing effect on stiffness and strength. During the CAI test, the 3D digital image correlation (DIC) technique was used to measure the displacement and deformation fields. Experimental results reveal the difference between the behavior of healed and damaged specimens. Additionally, the numerical models of intact, damaged, and healed composite laminates were developed using the finite element code LS-Dyna. Numerical models with calibrated material properties and tie-break contact constants provide good correlation with experimental results and allow for the prediction of the mechanical behavior of intact, damaged, and healed laminated plates. The comparison analysis based on CAI test results and modal characteristics obtained by the 3D Laser Doppler Vibrometer (Polytec GmbH, Karlsbad, Germany) proved that thermal healing partially restores the mechanical properties of damaged laminate plates. In contrast, active thermography does not necessarily indicate a healing effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。