Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus.

长期暴露于捕食者气味对前额皮质、杏仁核和下丘脑的氧化/抗氧化作用

阅读:5
作者:Mejia-Carmona G E, Gosselink K L, Pérez-Ishiwara G, Martínez-Martínez A
The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic-pituitary-adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。