Pyroptosis, a form of programmed cell death driven by the NLRP3 inflammasome, is a key contributor to inflammation in various diseases. This study aimed to investigate the anti-inflammatory mechanisms of cordycepin, focusing on its role in macrophage pyroptosis. Molecular docking analysis was performed to evaluate the binding affinity of cordycepin to key pyroptosis-related proteins, including NLRP3, Caspase-1, and GSDMD. RAW264.7 cells were pre-treated with cordycepin to assess its effects on pyroptosis. Key measurements included reactive oxygen species (ROS) levels, xanthine oxidase (XO) activity, and the expression of NLRP3, Caspase-1, and GSDMD. Additionally, lactate dehydrogenase (LDH) release, interleukin (IL)-1β and IL-18 levels in the culture supernatant, and macrophage cell death rates were evaluated using Hoechst 33342/PI dual staining. The results demonstrated that cordycepin exhibits strong binding affinity for NLRP3, Caspase-1, and GSDMD. Cordycepin pre-treatment significantly reduced ROS levels and XO activity, inhibited the expression of NLRP3, cleaved-Caspase-1, and cleaved-GSDMD, and decreased pyroptosis-associated inflammatory cytokines IL-1β and IL-18, along with Caspase-1 activity. Furthermore, cordycepin reduced the macrophage pyroptosis rate. In conclusion, cordycepin inhibits macrophage pyroptosis by reducing XO activity, suppressing ROS production, and regulating the expression of key molecules in the NLRP3/Caspase-1/GSDMD pathway. These findings provide a strong experimental basis for the potential development of cordycepin as a novel anti-inflammatory agent.
Cordycepin attenuates NLRP3/Caspase-1/GSDMD-mediated LPS-induced macrophage pyroptosis.
虫草素可减弱 NLRP3/Caspase-1/GSDMD 介导的 LPS 诱导的巨噬细胞焦亡
阅读:3
作者:Liu Zige, Lv Li, Wei Jiao, Xie Yuli, Jili Mujia, Huang Yian, Yang Rirong, Luo Yu
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Feb 14; 16:1526616 |
| doi: | 10.3389/fphar.2025.1526616 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
