Sugar accumulation enhancement in sorghum stem is associated with reduced reproductive sink strength and increased phloem unloading activity

高粱茎中糖积累的增强与生殖库强度的降低和韧皮部卸载活性的增加有关

阅读:8
作者:Xueyi Xue, Gabriel Beuchat, Jiang Wang, Ya-Chi Yu, Stephen Moose, Jin Chen, Li-Qing Chen

Abstract

Sweet sorghum has emerged as a promising source of bioenergy mainly due to its high biomass and high soluble sugar yield in stems. Studies have shown that loss-of-function Dry locus alleles have been selected during sweet sorghum domestication, and decapitation can further boost sugar accumulation in sweet sorghum, indicating that the potential for improving sugar yields is yet to be fully realized. To maximize sugar accumulation, it is essential to gain a better understanding of the mechanism underlying the massive accumulation of soluble sugars in sweet sorghum stems in addition to the Dry locus. We performed a transcriptomic analysis upon decapitation of near-isogenic lines for mutant (d, juicy stems, and green leaf midrib) and functional (D, dry stems and white leaf midrib) alleles at the Dry locus. Our analysis revealed that decapitation suppressed photosynthesis in leaves, but accelerated starch metabolic processes in stems. SbbHLH093 negatively correlates with sugar levels supported by genotypes (DD vs. dd), treatments (control vs. decapitation), and developmental stages post anthesis (3d vs.10d). D locus gene SbNAC074A and other programmed cell death-related genes were downregulated by decapitation, while sugar transporter-encoding gene SbSWEET1A was induced. Both SbSWEET1A and Invertase 5 were detected in phloem companion cells by RNA in situ assay. Loss of the SbbHLH093 homolog, AtbHLH093, in Arabidopsis led to a sugar accumulation increase. This study provides new insights into sugar accumulation enhancement in bioenergy crops, which can be potentially achieved by reducing reproductive sink strength and enhancing phloem unloading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。