Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice.

氧化表型可保护小鼠的肌纤维免受慢性心力衰竭引起的病理损伤

阅读:5
作者:Li Ping, Waters Richard E, Redfern Shelley I, Zhang Mei, Mao Lan, Annex Brian H, Yan Zhen
The fiber specificity of skeletal muscle abnormalities in chronic heart failure (CHF) has not been defined. We show here that transgenic mice (8 weeks old) with cardiac-specific overexpression of calsequestrin developed CHF (50.9% decrease in fractional shortening and 56.4% increase in lung weight, P<0.001), cachexia (37.8% decrease in body weight, P<0.001), and exercise intolerance (69.3% decrease in running distance to exhaustion, P<0.001) without a significant change in muscle fiber-type composition. Slow oxidative soleus muscle maintained muscle mass, whereas fast glycolytic tibialis anterior and plantaris muscles underwent atrophy (11.6 and 13.3%, respectively; P<0.05). In plantaris muscle, glycolytic type IId/x and IIb, but not oxidative type I and IIa, fibers displayed significant decreases in cross-sectional area (20.3%, P<0.05). Fast glycolytic white vastus lateralis muscle showed sarcomere degeneration and decreased cytochrome c oxidase IV (39.5%, P<0.01) and peroxisome proliferator-activated receptor gamma co-activator 1alpha protein expression (30.3%, P<0.01) along with a dramatic induction of the MAFbx/Atrogin-1 mRNA. These findings suggest that exercise intolerance can occur in CHF without fiber type switching in skeletal muscle and that oxidative phenotype renders myofibers resistant to pathological insults induced by CHF.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。