BACKGROUND: Different feeding regimens in infancy alter the gastrointestinal (gut) microbial environment. The fecal microbiota in turn influences gastrointestinal homeostasis including metabolism, immune function, and extra-/intra-intestinal signaling. Advances in next generation sequencing (NGS) have enhanced our ability to study the gut microbiome of breast-fed (BF) and formula-fed (FF) infants with a data-driven hypothesis approach. METHODS: Next generation sequencing libraries were constructed from fecal samples of BF (n=24) and FF (n=10) infants and sequenced on an Illumina HiSeq 2500. Taxonomic classification of the NGS data was performed using the Sunbeam/Kraken pipeline and a functional analysis at the gene level was performed using publicly available algorithms, including BLAST, and custom scripts. Differentially represented genera, genes, and NCBI Clusters of Orthologous Genes (COG) were determined between cohorts using count data and R (statistical packages edgeR and DESeq2). RESULTS: Thirty-nine genera were found to be differentially represented between the BF and FF cohorts (FDR ⤠0.01) including Parabacteroides, Enterococcus, Haemophilus, Gardnerella, and Staphylococcus. A Welch t-test of the Shannon diversity index for BF and FF samples approached significance (p=0.061). Bray-Curtis and Jaccard distance analyses demonstrated clustering and overlap in each analysis. Sixty COGs were significantly overrepresented and those most significantly represented in BF vs. FF samples showed dichotomy of categories representing gene functions. Over 1,700 genes were found to be differentially represented (abundance) between the BF and FF cohorts. CONCLUSIONS: Fecal samples analyzed from BF and FF infants demonstrated differences in microbiota genera. The BF cohort includes greater presence of beneficial genus Bifidobacterium. Several genes were identified as present at different abundances between cohorts indicating differences in functional pathways such as cellular defense mechanisms and carbohydrate metabolism influenced by feeding. Confirmation of gene level NGS data via PCR and electrophoresis analysis revealed distinct differences in gene abundances associated with important biologic pathways.
Impact of Early Feeding: Metagenomics Analysis of the Infant Gut Microbiome.
早期喂养的影响:婴儿肠道微生物组的宏基因组学分析
阅读:5
作者:Di Guglielmo Matthew D, Franke Karl R, Robbins Alan, Crowgey Erin L
| 期刊: | Frontiers in Cellular and Infection Microbiology | 影响因子: | 4.800 |
| 时间: | 2022 | 起止号: | 2022 Mar 4; 12:816601 |
| doi: | 10.3389/fcimb.2022.816601 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
