This paper presents a novel approach, ReactorNet, a machine learning framework leveraging thermal neutron flux imaging to enable real-time monitoring of pressurized water reactors (PWRs). By integrating EfficientNetB0 with a hybrid classification-regression architecture, the model accurately identifies control rod positions and operational parameters through thermal neutron flux patterns detected by ex-core sensors. Principal Component Analysis (PCA) and Clustering Analysis decode radial flux variations linked to rod movements, while simulations of a 2772-MW(th) PWR using TRITON FORTRAN validate the framework. This framework outperforms Vision Transformers and ResNet50, achieving superior multi-class accuracy (97.5%) and reduced the mean absolute error (MAE) of regression. Test-Time Augmentation and cross-validation mitigate data limitations, ensuring robustness. This work bridges AI and nuclear engineering, demonstrating EfficientNetB0's potential for precise, real-time reactor monitoring, enhancing operational safety and efficiency.
ReactorNet based on machine learning framework to identify control rod position for real time monitoring in PWRs.
ReactorNet 基于机器学习框架,用于识别压水堆控制棒位置,以便进行实时监测
阅读:8
作者:Omar Ahmed, Elhadad Mohamed K, El-Samrah Moamen G, Nagla Tarek F, Mekkawy Tamer
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 18; 15(1):30173 |
| doi: | 10.1038/s41598-025-13794-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
