ZEB2 reduction contributes to pre-eclampsia via Wnt/β-Catenin pathway.

ZEB2 减少通过 Wnt/β-catenin 通路导致先兆子痫

阅读:8
作者:Zhang Yanxin, Gu Fangle, Liu Yan, Sun Yujie, Zhang Liying, Lu Dan
BACKGROUND: Pre-eclampsia (PE) is a pregnancy specific disease characterized by hypertension and proteinuria. The aim of this study was to investigate the effects of Zinc finger E-box binding homologous box 2 (ZEB2) on PE mice and on placental trophoblast cells, as well as to elucidate its role in Wnt/β-Catenin pathway. METHODS: The PE mice models were established through L-NAME administration. RT-qPCR and western blot assay were used to detect the expression of ZEB2 in human serum, placental tissues, HTR8/Sveno cells, and mice models. Edu assay, flow cytometry, and Transwell analysis were applied for determining HTR8/Sveno cells proliferation, apoptosis, migration, and invasion ability, respectively. The expression levels of related proteins in the Wnt/β-Catenin pathway were detected by western blot analysis. The systolic blood pressure (SBP) of mice was analyzed by the noninvasive tail cuff method. Proteinuria was detected using CBB kits and TUNEL method was used to measure apoptosis of placental tissue cells in PE mice. RESULTS: The significant increase SBP and urinary protein in L-NAME treated mice indicated the successful construction of the PE mice model. We found that ZEB2 was down-regulated in the serum and placental tissues of PE patients. Further in vitro experiments showed that ZEB2-plasmid enhanced cell proliferation, migration, and invasion, as well as reduced cell apoptosis, compared with the control-plasmid group. In addition, up-regulation of ZEB2 promoted the protein level of Bcl-2 in HTR-8/SVneo cells and inhibited Bax expression. We also found that ZEB2-plasmid activated Wnt/β-Catenin signaling pathway, as confirmed by enhanced Wnt3a, β-Catenin, p-GSK3β, C-Myc, and Cyclin D1 expression. Importantly, the Wnt/β-Catenin signaling inhibitor (XAV939) partially reversed the effects of ZEB2-plasmid on HTR-8/SVneo cells. We also observed similar findings in in vivo mice models as in vitro cell experiments. CONCLUSION: ZEB2 was involved in the pathological and physiological processes of PE through Wnt/β-Catenin pathway, which may provide a useful perspective for exploring new therapies for PE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。