Multi-Omics and -Organ Insights into Energy Metabolic Adaptations in Early Sepsis Onset.

多组学和多器官视角揭示脓毒症早期发作时的能量代谢适应

阅读:4
作者:Xu Lin-Lin, Zhou Zhengyuan, Schäuble Sascha, Vivas Wolfgang, Dlubatz Karen, Bauer Michael, Weis Sebastian, Singer Mervyn, Lukaszewski Roman, Panagiotou Gianni
Systemic metabolic dysregulation in sepsis critically impacts patient survival. To better understand its onset, untargeted serum metabolomics and lipidomics are analyzed from 152 presymptomatic patients undergoing major elective surgery, and identified key metabolites, including serine and aminoadipic acid, that differentiate postoperative uncomplicated infection from sepsis. Using single-nucleus RNA sequencing data from an in vivo mouse model of sepsis, tissue-independent down-regulation and tissue-specific differences of serine and energy-related genes including key module roles for the mitochondria-linked genes, Cox4i1, Cox8a, and Ndufa4 are identified. Finally, serine-dependent metabolic shifts, especially in the liver, are revealed by using (12)C/(13)C murine data with labeled serine, and link altered activity of the serine hydroxymethyltransferase (SHMT) cycle with perturbed purine metabolism during sepsis. This study demonstrates the close interrelationship between early metabolite changes and mitochondrial dysfunction in sepsis, improves the understanding of the underlying pathophysiology, and highlights metabolic targets to prospectively treat presymptomatic, but at-risk, patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。