The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.
A transfer learning framework to elucidate the clinical relevance of altered proximal tubule cell states in kidney disease.
迁移学习框架用于阐明肾脏疾病中近端肾小管细胞状态改变的临床相关性
阅读:4
作者:Legouis David, Rinaldi Anna, Malpetti Daniele, Arnoux Gregoire, Verissimo Thomas, Faivre Anna, Mangili Francesca, Rinaldi Andrea, Ruinelli Lorenzo, Pugin Jerome, Moll Solange, Clivio Luca, Bolis Marco, de Seigneux Sophie, Azzimonti Laura, Cippà Pietro E
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Feb 22; 27(3):109271 |
| doi: | 10.1016/j.isci.2024.109271 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
