Sulfonylurea receptor coupled conductances alter the performace of two central pattern generating circuits in Cancer borealis.

磺酰脲受体偶联电导改变了北方巨蟹座中两个中枢模式生成回路的性能

阅读:4
作者:Kedia Sonal, Awal Naziru M, Seddon Jackie, Marder Eve
Neuronal activity and energy supply must maintain a fine balance for neuronal fitness. Various channels of communication between the two could impact network output in different ways. Sulfonylurea receptors (SURs) are a modification of ATP-binding cassette proteins (ABCs) that confer ATP-dependent gating on their associated ion channels. They are widely expressed and link metabolic states directly to neuronal activity. The role they play varies in different circuits, both enabling bursting and inhibiting activity in pathological conditions. The crab, Cancer borealis, has central patterns generators (CPGs) that fire in rhythmic bursts nearly constantly and it is unknown how energy availability influences these networks. The pyloric network of the stomatogastric ganglion (STG) and cardiac ganglion (GC) control rhythmic contractions of the foregut and heart respectively. Pharmacological manipulation of SURs results in opposite effects in the two CPGs. Neuronal firing completely stops in the STG when SUR-associated channels are open, and firing increases when the channels are closed. This results from a decrease in the excitability of pyloric dilator (PD) neurons, which are a part of the pacemaker kernel. The neurons of the CG, paradoxically, increase firing within bursts when SUR-associated channels are opened, and bursting slows when SUR-associated channels are closed. The channel permeability and sensitivities analyses present novel SUR-conductance biophysics, which nevertheless change activity in ways reminiscent of the predominantly studied mammalian receptor/channels. We suggest that SUR-associated conductances allow different neurons to respond to energy states in different ways through a common mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。