Swelling-associated changes in extracellular matrix (ECM) occur in many pathological conditions involving inflammation or oedema. Here we show that alterations in the proportion of loosely bound water in ECM correlate with changes in ECM elasticity and stress relaxation, owing to the strength of water binding to ECM being primarily governed by osmolality and the electrostatic properties of proteoglycans. By using mechanical testing and small-angle X-ray scattering, as well as magnetic resonance imaging (MRI) to detect changes in loosely bound water, we observed that enhanced water binding manifests as greater resistance to compression (mechanical or osmotic), resulting from increased electrostatic repulsion between negatively charged proteoglycans rather than axial contraction in collagen fibrils. This indicates that electrostatic contributions of proteoglycans regulate elasticity and stress relaxation independently of hydration. Our ex vivo experiments in osmotically modulated tendon elucidate physical causes of MRI signal alterations, in agreement with pilot in vivo MRI of inflammatory Achilles tendinopathy. We suggest that the strength of water binding to ECM regulates cellular niches and can be exploited to enhance MRI-informed diagnostics of swelling-associated tissue pathology.
Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology.
水和离子与细胞外基质结合,驱动应力松弛,有助于 MRI 检测与肿胀相关的病理
阅读:11
作者:Kollert Matthias R, Krämer Martin, Brisson Nicholas M, Schemenz Victoria, Tsitsilonis Serafeim, Qazi Taimoor H, Fratzl Peter, Vogel Viola, Reichenbach Jürgen R, Duda Georg N
| 期刊: | Nature Biomedical Engineering | 影响因子: | 26.600 |
| 时间: | 2025 | 起止号: | 2025 May;9(5):772-786 |
| doi: | 10.1038/s41551-025-01369-w | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
