Recent studies have revealed a critical role for natural Abs (NAbs) in antitumor immune responses. However, the role of NAbs in cancer immunosurveillance remains unexplored, mainly because of the lack of in vivo models that mimic the early recognition and elimination of transforming cells. In this article, we propose a role for NAbs in alerting the immune system against precancerous neoantigen-expressing cells immediately after they escape intrinsic tumor suppression mechanisms. We identify four distinct reproducible, trackable, MHC-matched neoantigen-expressing cell models that do not form tumors as the end point. This amplified readout in the critical window prior to tumor formation allows investigation of new mediators of cancer immunosurveillance. We found that neoantigen-expressing cells adoptively transferred in NAb-deficient mice persisted, whereas they were eliminated in wild-type mice, indicating that the circulating NAb repertoire alerts the immune system to the presence of transformed cells. Moreover, immunity is mounted against immunogenic and nonimmunogenic neoantigens contained in the NAb-tagged cells, regardless of whether the NAb directly recognizes the neoantigens. Beyond these neoantigen-expressing model systems, we observed a significantly greater tumor burden in chemically and virally induced tumor models in NAb-deficient mice compared with wild-type mice. Restoration of the NAb repertoire in NAb-deficient mice elicited the recognition and elimination of neoantigen-expressing cells and cancer. These data show that NAbs are required and sufficient for elimination of transformed cells early in tumorigenesis. These models can now be used to investigate how NAbs stimulate immunity via recognition receptors to eliminate precancerous cells.
Natural Antibodies Alert the Adaptive Immune System of the Presence of Transformed Cells in Early Tumorigenesis.
天然抗体在肿瘤发生早期阶段向适应性免疫系统发出转化细胞存在的警报
阅读:4
作者:Rawat Kavita, Soucy Shannon M, Kolling Fred W, Diaz Kiara Manohar, King William T, Tewari Anita, Jakubzick Claudia V
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2022 | 起止号: | 2022 Oct 1; 209(7):1252-1259 |
| doi: | 10.4049/jimmunol.2200447 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
