Tissue development and regeneration rely on the deployment of embryonic signals to drive progenitor activity and thus generate complex cell diversity and organization. One such signal is Sonic Hedgehog (Shh), which establishes the dorsal-ventral (D/V) axis of the spinal cord during embryogenesis. However, the existence of this D/V axis and its dependence on Shh signaling during regeneration varies by species. Here we investigate the function of Shh signaling in patterning the D/V axis during spinal cord regeneration in Xenopus tropicalis tadpoles. We find that neural progenitor markers Msx1/2, Nkx6.1, and Nkx2.2 are confined to dorsal, intermediate and ventral spatial domains, respectively, in both the uninjured and regenerating spinal cord. These domains are altered by perturbation of Shh signaling. Additionally, we find that these D/V domains are more sensitive to Shh perturbation during regeneration than uninjured tissue. The renewed sensitivity of these neural progenitor cells to Shh signals represents a regeneration specific response and raises questions about how responsiveness to developmental patterning cues is regulated in mature and regenerating tissues.
Shh signaling directs dorsal ventral patterning in the regenerating X. tropicalis spinal cord.
Shh 信号指导再生中的非洲爪蟾脊髓的背腹模式形成
阅读:4
作者:Swearer Avery Angell, Perkowski Samuel, Wills Andrea
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Oct 19 |
| doi: | 10.1101/2024.10.18.619160 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
