Fabrication of 3-Dimensional-Printed Bilayered Scaffold Carboxymethyl Chitosan/Oxidized Xanthan Gum, Biphasic Calcium Phosphate for Osteochondral Regeneration.

3D打印双层支架羧甲基壳聚糖/氧化黄原胶、双相磷酸钙的制备及其在骨软骨再生中的应用

阅读:6
作者:Nguyen My N-H, Vu Binh T, Truong Dung M, Le Thanh D, Vo Thanh-Tuyen T, Vo Toi V, Nguyen Thi-Hiep
Cartilage tissue regeneration remains challenging due to the tissue's poor self-healing capacity, attributed to its hypocellular and avascular nature, which limits nutrient delivery to the defect site and complicates healing. Traditional methods often utilize the subchondral tissue layer to improve nutrient exchange through its vascular network, although these approaches have limitations. To address these issues, 3-dimensional (3D) printing has been employed to create the bilayered scaffold that mimics the complex structure of osteochondral tissue. In this study, the N,O-carboxymethyl chitosan (NOCC) and oxidized xanthan gum (OXG) hydrogel was fabricated for the cartilage layer due to its similarity to the native cartilage structure, while the biphasic calcium phosphate (BCP) incorporation enhanced the osteoconductivity to promote new bone growth for osteochondral tissue regeneration. Various characterization tests, including compression strength, scanning electron microscopy analysis, and biological properties, were conducted to evaluate and balanced to achieve the highest regenerative capacity for implantation. No cytotoxicity was caused, while the in vitro testing highlighted that the addition of BCP considerably supported cellular behavior on the scaffold and improved the regeneration rate. With 60% BCP content, the 3D scaffold demonstrated a high osteochondral tissue regeneration rate, as evidenced by visual inspection, x-ray imaging, and histological analysis, outperforming other experimental models.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。