Cartilage tissue regeneration remains challenging due to the tissue's poor self-healing capacity, attributed to its hypocellular and avascular nature, which limits nutrient delivery to the defect site and complicates healing. Traditional methods often utilize the subchondral tissue layer to improve nutrient exchange through its vascular network, although these approaches have limitations. To address these issues, 3-dimensional (3D) printing has been employed to create the bilayered scaffold that mimics the complex structure of osteochondral tissue. In this study, the N,O-carboxymethyl chitosan (NOCC) and oxidized xanthan gum (OXG) hydrogel was fabricated for the cartilage layer due to its similarity to the native cartilage structure, while the biphasic calcium phosphate (BCP) incorporation enhanced the osteoconductivity to promote new bone growth for osteochondral tissue regeneration. Various characterization tests, including compression strength, scanning electron microscopy analysis, and biological properties, were conducted to evaluate and balanced to achieve the highest regenerative capacity for implantation. No cytotoxicity was caused, while the in vitro testing highlighted that the addition of BCP considerably supported cellular behavior on the scaffold and improved the regeneration rate. With 60% BCP content, the 3D scaffold demonstrated a high osteochondral tissue regeneration rate, as evidenced by visual inspection, x-ray imaging, and histological analysis, outperforming other experimental models.
Fabrication of 3-Dimensional-Printed Bilayered Scaffold Carboxymethyl Chitosan/Oxidized Xanthan Gum, Biphasic Calcium Phosphate for Osteochondral Regeneration.
3D打印双层支架羧甲基壳聚糖/氧化黄原胶、双相磷酸钙的制备及其在骨软骨再生中的应用
阅读:16
作者:Nguyen My N-H, Vu Binh T, Truong Dung M, Le Thanh D, Vo Thanh-Tuyen T, Vo Toi V, Nguyen Thi-Hiep
| 期刊: | Biomaterials Research | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 29:0186 |
| doi: | 10.34133/bmr.0186 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
