Spherical harmonics texture extraction for versatile analysis of biological objects.

球谐函数纹理提取在生物对象多功能分析中的应用

阅读:5
作者:Gros Oane, Passmore Josiah B, Borst Noa O, Kutra Dominik, Nijenhuis Wilco, Fuqua Timothy, Kapitein Lukas C, Crocker Justin M, Kreshuk Anna, Köhler Simone
The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data. Here, we present Spherical Texture extraction, which measures the variance in intensity per angular wavelength by calculating the Spherical Harmonics or Fourier power spectrum of a spherical or circular projection of the angular mean intensity of the object. This method provides a 20-value characterization that quantifies the scale of features in the spherical projection of the intensity distribution, giving a different signal if the intensity is, for example, clustered in parts of the volume or spread across the entire volume. We apply this method to different systems and demonstrate its ability to describe various biological problems through feature extraction. The Spherical Texture extraction characterizes biologically defined gene expression patterns in Drosophila melanogaster embryos, giving a quantitative read-out for pattern formation. Our method can also quantify morphological differences in Caenorhabditis elegans germline nuclei, which lack a predefined pattern. We show that the classification of germline nuclei using their Spherical Texture outperforms a convolutional neural net when training data is limited. Additionally, we use a similar pipeline on 2D cell migration data to extract the polarization direction and quantify the alignment of fluorescent markers to the migration direction. We implemented the Spherical Texture method as a plugin in ilastik to provide a parameter-free and data-agnostic application to any segmented 3D or 2D dataset. Additionally, this technique can also be applied through a Python package to provide extra feature extraction for any object classification pipeline or downstream analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。