Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by cancer type. The factors that influence the relative utilization of gene inactivation pathways are poorly understood. In this study, we describe a detailed quantitative analysis of the three major gene inactivation mechanisms for a model gene at two different genomic integration sites in mouse embryonic stem (ES) cells. In addition, we targeted the major DNA methyltransferase gene, Dnmt1, to investigate the relative contribution of DNA methylation to these various competing gene inactivation pathways. Our data show that gene loss is the predominant mode of inactivation of a herpes simplex virus thymidine kinase neomycin phosphotransferase reporter gene (HSV-TKNeo) at the two integration sites tested and that this event is significantly reduced in Dnmt1-deficient cells. Gene silencing by promoter methylation requires Dnmt1, suggesting that the expression of Dnmt3a and Dnmt3b alone in ES cells is insufficient to achieve effective gene silencing. We used a novel assay to show that missense mutation rates are also substantially reduced in Dnmt1-deficient cells. This is the first direct demonstration that DNA methylation affects point mutation rates in mammalian cells. Surprisingly, the fraction of CpG transition mutations was not reduced in Dnmt1-deficient cells. Finally, we show that methyl group-deficient growth conditions do not cause an increase in missense mutation rates in Dnmt1-proficient cells, as predicted by methyltransferase-mediated mutagenesis models. We conclude that Dnmt1 deficiency and the accompanying genomic DNA hypomethylation result in a reduction of three major pathways of gene inactivation in our model system.
Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells.
Dnmt1 缺陷型胚胎干细胞中基因丢失、基因沉默和基因突变的发生率降低
阅读:3
作者:Chan M F, van Amerongen R, Nijjar T, Cuppen E, Jones P A, Laird P W
| 期刊: | Molecular and Cellular Biology | 影响因子: | 2.700 |
| 时间: | 2001 | 起止号: | 2001 Nov;21(22):7587-600 |
| doi: | 10.1128/MCB.21.22.7587-7600.2001 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
