An efficient transfer learning based cross model classification (TLBCM) technique for the prediction of breast cancer.

一种基于迁移学习的高效跨模型分类(TLBCM)技术,用于预测乳腺癌

阅读:5
作者:Jakkaladiki Sudha Prathyusha, Maly Filip
Breast cancer has been the most life-threatening disease in women in the last few decades. The high mortality rate among women is due to breast cancer because of less awareness and a minimum number of medical facilities to detect the disease in the early stages. In the recent era, the situation has changed with the help of many technological advancements and medical equipment to observe breast cancer development. The machine learning technique supports vector machines (SVM), logistic regression, and random forests have been used to analyze the images of cancer cells on different data sets. Although the particular technique has performed better on the smaller data set, accuracy still needs to catch up in most of the data, which needs to be fairer to apply in the real-time medical environment. In the proposed research, state-of-the-art deep learning techniques, such as transfer learning, based cross model classification (TLBCM), convolution neural network (CNN) and transfer learning, residual network (ResNet), and Densenet proposed for efficient prediction of breast cancer with the minimized error rating. The convolution neural network and transfer learning are the most prominent techniques for predicting the main features in the data set. The sensitive data is protected using a cyber-physical system (CPS) while using the images virtually over the network. CPS act as a virtual connection between human and networks. While the data is transferred in the network, it must monitor using CPS. The ResNet changes the data on many layers without compromising the minimum error rate. The DenseNet conciliates the problem of vanishing gradient issues. The experiment is carried out on the data sets Breast Cancer Wisconsin (Diagnostic) and Breast Cancer Histopathological Dataset (BreakHis). The convolution neural network and the transfer learning have achieved a validation accuracy of 98.3%. The results of these proposed methods show the highest classification rate between the benign and the malignant data. The proposed method improves the efficiency and speed of classification, which is more convenient for discovering breast cancer in earlier stages than the previously proposed methodologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。