A previous screening of more than 50,000 compounds led to the identification of a pool of bioactive small molecules with inhibitory effect on the influenza A virus. One of these compounds, now widely known as nucleozin, is a small molecule that targets the influenza A virus nucleoprotein. Here we identify and characterize two structurally different novel fusion inhibitors of the influenza A virus group 1 hemagglutinin (HA), FA-583 and FA-617, with low nanomolar activities. Escape mutants that are highly resistant to each of these compounds were generated, and both were found to carry mutations localized in close proximity to the B-loop of the hemagglutinin 2 protein, which plays a crucial role in the virion-host cell fusion process. Recombinant virus, generated through reverse genetics, confirmed the resistance phenotype. In addition, the proposed binding pockets predicted by molecular docking studies are in accordance with the resistance-bearing mutation sites. We show through mechanistic studies that FA-583 and FA-617 act as fusion inhibitors by prohibiting the low-pH-induced conformational change of hemagglutinin. Our study has offered concrete biological and mechanistic explorations for the strategic development of novel fusion inhibitors of influenza A viruses. IMPORTANCE: Here we report two structurally distinctive novel fusion inhibitors of influenza A virus that act by interfering with the structural change of HA at acidic pH, a process necessary for successful entry of the virus. Mutational and molecular docking studies have identified their binding pockets situated in close proximity to the B-loop region of hemagglutinin 2. The reduced sensitivity of FA-583- or FA-617-associated mutants to another compound suggests a close proximity and even partial overlap of their binding sites on hemagglutinin. Amino acid sequence alignments and crystal structure analyses of group 1 and group 2 hemagglutinins have shed light on the possible binding mode of these two compounds. This report offers new lead compounds for the design of fusion inhibitors for influenza A viruses and further shows that analysis by forward chemical genetics is a highly effective approach for the identification of novel compounds that can perturb the infectivity of viruses and to probe new druggable targets or druggable domains in various viruses.
Identification of Novel Fusion Inhibitors of Influenza A Virus by Chemical Genetics.
利用化学遗传学方法鉴定甲型流感病毒的新型融合抑制剂
阅读:4
作者:Lai Kin Kui, Cheung Nam Nam, Yang Fang, Dai Jun, Liu Li, Chen Zhiwei, Sze Kong Hung, Chen Honglin, Yuen Kwok-Yung, Kao Richard Yi Tsun
| 期刊: | Journal of Virology | 影响因子: | 3.800 |
| 时间: | 2015 | 起止号: | 2015 Dec 16; 90(5):2690-701 |
| doi: | 10.1128/JVI.02326-15 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
